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In terms of the s-wave phase shift of the two-body scattering at thermal wave-
length, a systematic perturbative expansion of the Virial coefficients is devel-
oped for a two-dimensional dilute system of bosons in its gaseous phase at low
temperature. The thermodynamic functions are calculated to the second order
of the expansion parameter. The observability of the universal low energy limit
of the two dimensional phase shift with a quasi-two dimensional atomic gas in
an anisotropic trap is discussed.
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1. INTRODUCTION

The recent advent of laser cooling and atomic trapping techniques makes
the physics of a dilute quantum gas experimentally accessible, which led to
the observation of the Bose–Einstein condensation of the trapped metallic
atoms in three dimensions. (1) Theoretical interests on these many-body
quantum mechanical system has also revived since then. While the Virial
expansion was investigated for a three dimensional dilute gas in both
gaseous phase and condensate phase long ago, (2–4) a parallel formulation
in two dimensions remains to be developed. There are many elegant works
on 2D bosons concerning the quasi-Bose condensate near the absolute
zero. (5–10) The Virial expansion developed in this paper is complementary.
As the quasi-two dimensional gas of trapped atoms is also experimentally
feasible, the result reported in this paper may be brought to a direct com-
parison with the measurements.



As is well-known, a perturbative treatment of a dilute Bose gas in two
dimensions suffers from two difficulties: (1) The scattering amplitude
vanishes in the zero energy limit and the Born expansion breaks down for a
large number of potentials. (11, 12) (2) The long range order parameter corre-
sponding to the Bose condensate ceases to exist at nonzero temperatures
because of the fluctuation of the condensate phase. (13) Both difficulties
stems from the two dimensional character of the density of states at low
energies. We shall focus on the first difficulty in this paper.

The Hamiltonian of a dilute system of interacting bosons is given by

H=C
pF

(p2 − m) b†
pFbpF+

1
2W

C
pF1, pF2, pF Œ1, pF Œ2

dpF1+pF2, pF Œ1+pF Œ2
OpF −

1 pF −

2 | V |pF1 pF2P b†
pF Œ2

b†
pF Œ1

bpF1
bpF2

(1)

with bpF , b†
pF the annihilation and creation operators of the bosons in their

momentum space and m the chemical potential. We have chosen the unit of
mass such that the mass of a boson is 1

2 . In the rest of this paper, two-body
potential V is assumed to be isotropic, repulsive and of short range in
coordinate space.

The physics of the system depends on the relations among three length
scales, the range of the interaction, r0, the average inter-particle distance
1/`n and the thermal wavelength,

l=`4pb (2)

with b=(kBT)−1. The diluteness is measured by nr2
0 ° 1 and the classical

limit corresponds to nl2
Q 0. The Virial expansion we shall derive applies

to the temperature such that nl2 ’ 1 when quantum coherence becomes
significant. The effective expansion parameter is the s-wave scattering
phase shift at the thermal wavelength, which is O( 1

ln(l2r2
0)−1 ). Therefore, the

interaction corrections are far more significant than that of a three dimen-
sional Bose gas at the same diluteness.

In the next section, we shall introduce a renormalized two body
potential as a expansion parameter in the dilute limit, which set up the sys-
tematics of the perturbation. The corresponding Virial expansion to the
second order of the renormalized potential will be developed in Section 3
with typical thermodynamic quantities calculated in Section 4 to the same
order. The convergence of the Virial expansion and its relation to the quasi
Bose–Einstein condensation will be discussed in the final section.

2. THE RENORMALIZED POTENTIAL

The requirement of renormalizing the interaction potential is not unfa-
miliar in three dimensions with a hard sphere potential or more realistic
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Lennard-Jones potential, for which a straight forward perturbation series
breaks down because of the singular behavior of the potential at short
distance. The natural choice for the renormalized potential is the exact
two-body scattering amplitude at zero energy (scattering length). What is
lacking in two dimensions is such a natural choice, since the scattering
amplitude vanishes at zero energy. This is analogous to perturbation theory
of the quantum chromodynamics, where the infrared slavery and the
asymptotic freedom deprive us of a natural scale of the ultraviolet renor-
malization. A running coupling constant defined at relevant energy scale
has to be introduced as the expansion parameter. For a two dimensional
Bose gas, we need also to introduce a running coupling constant, which
turns out to be the s-wave phase shift at the thermal wavelength of the
bosons.

To replace OpF −

1 pF −

2 | V |pF1 pF2P with appropriate renormalized quantity at
low energies, we focus on the two body sector of the Hamiltonian (1) and
define

V=1
2 (Ve−bHebH0+ebH0e−bHV). (3)

The hermitian operator V can be formally expanded according to the
power of the potential V and vice versa. To the leading order V=V and it
is straight forward to show that

V=V+1
2
5F

b

0
dy Ve−yH0VeyH0+F

b

0
dy eyH0Ve−yH0V6+O(V3). (4)

Sandwiching V between two-body states and completing the integral over y,
we find that

OpF −

1 pF −

2 | V |pF1 pF2P=OpF −

1 pF −

2 | V |pF1 pF2P

+
1
2

C
kF 2, kF 2

5eb(p2
1+p2

2 − k2
1 − k2

2) − 1
p2

1+p2
2 − k2

1 − k2
2

+
eb(p Œ2

1 +p Œ2
2 − k2

1 − k2
2) − 1

p2Œ

1 +p2Œ

2 − k2
1 − k2

2

6

×OpF −

1 pF −

2 | V |kF1kF2POkF1kF2 | V |pF1 pF2P+O(V3). (5)

As we shall see, the matrix element OpF −

1 pF −

2 | V |pF1 pF2P vanishes in the limit
b Q . and is a proper choice of the renormalized potential at low temper-
ature. Furthermore, replacing V by its formal expansion in V, the system-
atics to all orders is restored. In terms of the two-body matrix element
of V, the Hamiltonian of the system, (1) becomes
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H=C
pF

(p2 − m) b†
pFbpF+

1
2W

C
pF1, pF2, pF Œ1, pF Œ2

dpF1+pF2, pF Œ1+pF Œ2
OpF −

1 pF −

2 | V |pF1 pF2P b†
pF Œ2

b†
pF Œ1

bpF1
bpF2

+
1

2W
C

pF1, pF2, pF Œ1, pF Œ2

dpF1+pF2, pF Œ1+pF Œ2
OpF −

1 pF −

2 | V− V |pF1 pF2P b†
pF Œ2

b†
pF Œ1

bpF1
bpF2

, (6)

where the last term is understood as an power series of V starting from
the order V2, like the renormalization counter terms in relativistic field
theories. A similar method of renormalization was developed in the context
of a lattice gas with on-site exclusion. (14)

The matrix element (3) is related to the binary kernel of Lee and
Yang (3) through

OpF −

1 pF −

2 | V |pF1 pF2P=− 1
2 [OpF −

1 pF −

2 | B(b) |pF1 pF2P eb(p2
1+p2

2)

+OpF1 pF2 | B(b) |pF −

1 pF −

2P
g eb(p Œ2

1 +p Œ2
2 )], (7)

and the Virial expansion developed here for a 2D Bose gas is parallel to
that of Lee and Yang for a 3D hard sphere gas.

In terms of the total momentum PF=pF1+pF2, PF −=pF −

1+pF −

2, and the
relative momentum pF=1

2 (pF1 − pF2), pF −=1
2 (pF −

1 − pF −

2), we have

OpF −

1 pF −

2 | V |pF1 pF2P=1
2 dPF Œ, PF [e2bp2

OpF −| Ve−bh |pFP+e2bp Œ2
OpF −| e−bhV |pFP], (8)

where

h=−2N2
r +V(rF) (9)

is the Hamiltonian of a potential scattering problem with rF the relative
coordinate. Inserting the complete set of eigenstates of h, i.e., h |nP=
En |nP, we have

OpF −| Ve−bh |pFP=C
n

e−bEn OpF −| V |nPOn | pFP (10)

and OpF −| e−bhV |pFP=OpF| Ve−bh |pF −Pg. For an isotropic potential, |nP is spe-
cified by the azimuthal quantum number, m, and the radial momentum, k,
with E=2k2. The corresponding wave function

OrF | k, mP=Nkm
1

`2p
e imfum(k | r) (11)
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where the radial wave function um(k | r) approaches asymptotically

um(r | k) 4 = 2
pkr

cos 5kr −
mp

2
−

p

4
+dm(k)6 (12)

for kr ± 1 with dm(k) the phase shift and Nkm is a normalization constant.
The partial-wave expansion of (10) reads

OpF −| Ve−bh |pFP=
1
W

V0(p −, p)+
2
W

C
.

m=1
Vm(p −, p) cos mF, (13)

where

Vm(p −, p)=2p C
k

N2
kme−2bk2

F
.

0
dr − r −Jm(p −r −) V(r −) um(k | r −)

× F
.

0
dr rum(k | r) Jm(pr) (14)

with F the angle between pF and pF −, and Jm(z) the Bessel function. The infi-
nite volume limit of the integral over r and the sum over k in (14) have to
be evaluated carefully. We defer the details to Appendix A and quote only
the result here,

Vm(p −, p)=−4e−2bp2 1 p −

p
2m

sin 2dm(p)+pP F
.

0
dk ke−2bk2 vm(p −, k) vm(p, k)

k2 − p2

(15)

with

vm(p, k)=F
.

0
dr rJm(pr) V(r) um(k | r), (16)

vm(p, p)=−
4
p

sin dm(p), (17)

and P the principal value of the integral. For a short-range potential, the
wave function um(k | r) normalized according to (12) takes the form

um(k | r) 4
sin dm(k)

k2m fm(r) (18)
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in the limit kr Q 0, with fm(r) independent of k. The phase shifts display
the following low energy behavior

d0(k) 4
p

2 ln ka
(19)

and

dm(k) ’ k2m, (20)

for m ] 0 where a is the s-wave scattering length in two dimensions. For a
hard sphere potential, a=1

2 ecr0 with r0 the radius of the sphere and c the
Euler constant. But the scattering length and the range of the potential may
not be comparable in general. The relevant length for the Virial expansion
developed in this paper is the scattering length a. It follows from (17) and
(18) that

vm(p, k)=−
4
p
1 p

k
2m

sin dm(k) (21)

for k and p both small, and the low energy and low temperature approxi-
mation of (15) reads

Vm(p −, p) 4 − 4e−2bp2 1 p −

p
2m

sin 2dm(p)

+
16
p

p −mpmP F
.

0
dk k−2m+1e−2bk2 sin2 dm(k)

k2 − p2 . (22)

Equation (19) was proved rigorously by Chan et al. (12) for a general
class of potentials that fall off faster than 1

r2 ln r
for r Q .. They also proved

that for the same class of potentials, the correction to the corresponding
function f0(r) of is of the order of k2. As this involves only the long wave-
length limit of the scattering, their conclusion can also generalized to the
repulsive potential that becomes singular as r Q 0. Therefore, all the loga-
rithmic dependence on the range of the interaction of, ln a, is absorbed in
the s-wave phase shift through (22). This way the s-wave channel dominates
over all other partial wave channels to all orders of a low energy expan-
sion, different from three dimensions. The universality found in ref. 12 is
highlighted in the low temperature thermodynamics of the 2D system.
In what follows, we shall suppress the subscript ‘‘0’’ for the s-wave and
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introduce a running coupling constant at the scale of the thermal wave-
length,

a —
1

ln l
2

2pa2 − c
, (23)

we have a 4 1
p d(`2p ec/2

l
) and the s-wave phase shift becomes

d=−pa+pa2 1 ln
k2l2

2p
+c2+ · · · . (24)

As we shall see, the choice of the constant pertaining to the logarithm of
(23) is to make the second Virial coefficient free from O(a2) corrections.
It follows from (10), (15), and (24) that the renormalized potential at low
energies reads

OpF −

1 pF −

2 | V |pF1 pF2P=
dPF , PF Œ

W
58pa − 8pa2 1 ln

pp −l2

2p
+c2

+16pa2P F
.

0
dk k

e2b(p2 − k2)

k2 − p2 + · · · 6 , (25)

and this expression will be applied extensively in the subsequent sections.
The dependence of the dimensionless running coupling constant (23)

on T and a is completely analogous to that of a relativistic field theory of
zero masses in 3D with T corresponding to the renormalization energy
scale and a the ultraviolet cutoff.

3. VIRIAL EXPANSION

The thermodynamics of a uniform gas is determined completely by its
equation of state, usually expressed in the form of the Virial expansion,

p
kBT

= C
.

l=1
blz l (26)

and

n=
“

“ ln z
1 p

kBT
2

T
(27)

with n the number density and z=ebm the fugacity. The lth Virial coeffi-
cient, bl is determined by the quantum mechanics of l particles, the exact
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solution of which is in general unavailable for l > 2. For an ideal Bose gas
in two dimensions, bl=

1
l2l2 . On writing

bl=
1

l2l2+b −

l, (28)

we have

p
kBT

=
1
l2 g2(z)+C (29)

with g2(z)=;.

l=1
zl

l2 and C — ;.

l=1 b −

lz
l. The perturbative expansion of C is

represented by thermal diagrams.
The thermal diagrams of C to the third order in a is shown in Fig. 1,

where a solid line represents a boson propagator, i
iwn − p2+m

with wn the
Matsubara energy of the boson, a solid circle vertex is associated to the
factor OpF −

1 pF −

2 | V |pF1 pF2P with pF1, pF2 (pF −

1, pF −

2) the incoming (outgoing)
momenta and an open circle vertex denotes OpF −

1 pF −

2 | V −V |pF1 pF2P, the
analog of the renormalization counter term in a relativistic field theory. In
what follows, we shall calculate the C to the order a2, which is one order
beyond the mean field approximation.

On writing

C=Ca+Cb+Cc+Cd+ · · · (30)

with Ca, Cb, Cc, and Cd standing for the contribution from the first four of
the diagrams in Fig. 1 in a sequential order, we have

Ca=−
1
b2 C

w1, w2

F
d2pF1

(2p)2 F
d2pF2

(2p)2

OpF1 pF2 | V |pF1 pF2P

(iw1 − p2
1+m)(iw2 − p2

2+m)

=−b F
d2pF1

(2p)2 F
d2pF2

(2p)2 OpF1 pF2 | V |pF1 pF2P n(pF1) n(pF2) (31)

with

n(pF)=
ze−bp2

1 − ze−bp2= C
.

l=1
z le−lbp2

(32)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 1. The thermal diagrams for Virial expansion to the order a3.
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and z=ebm the fugacity. In accordance with the expansion (25), we have

Ca=C −

a+C'

a (33)

with

C −

a=−8pab F
d2pF1

(2p)2 F
d2pF2

(2p)2 n(pF1) n(pF2) 51 − a 1 ln
p2l2

2p2 +c26 (34)

and

C'

a =16pa2b F
d2pF1

(2p)2 F
d2pF2

(2p)2 n(pF1) n(pF2) P F
.

0
dk k

eb(p2 − k2)

p2 − k2 . (35)

Using Taylor expansion of (32) and integrating over pF1 and pF2, we end up
with

C −

a=−
2a

l2
5ln2 1

1 − z
+aD(z)+O(a2)6 (36)

with

D(z)= C
.

r, s=1

z r+s

rs
ln

2rs
r+s

.

Similarly, we have

Cb=
128p2a2

b2 F
d2pF1

(2p)2 F
d2pF2

(2p)2 F
d2pF3

(2p)2

× C
w1, w2, w3

1
(iw1 − p2

1+m)2 (iw2 − p2
1+m)(iw3 − p2

3+m)

=128p2a2b2 F
d2pF1

(2p)2 F
d2pF2

(2p)2 F
d2pF3

(2p)2 n(pF1)[n(pF1)+1] n(pF2) n(pF3)

=
8a2

l2

z
(1 − z)2 ln2 1

1 − z
. (37)
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Finally

Cc=32p2a2b F
d2pF1

(2p)2 F
d2pF2

(2p)2 F
d2pF3

(2p)2 F
d2pF4

(2p)2 (2p)2 d2(pF1+pF2 − pF3 − pF4)

× C
w1, w2, w3

1
(iw1 − p2

1+m)(iw2 − p2
2+m)(iw3 − p2

3+m)[i(w1+w2 − w3) − p2
4+m]

=
32p2a2b

z2 F
d2pF1

(2p)2 F
d2pF2

(2p)2 F
d2pF3

(2p)2 F
d2pF4

(2p)2 (2p)2 d2(pF1+pF2 − pF3 − pF4)

×
eb(p2

1+p2
2) − eb(p2

3+p2
4)

p2
1+p2

2 − p2
3 − p2

4

n(pF1) n(pF2) n(pF3) n(pF4), (38)

which represents a genuine three-body scattering, and

Cd=−64p2a2b F
d2pF1

(2p)2 F
d2pF2

(2p)2 F
d2pF3

(2p)2 F
d2pF4

(2p)2 (2p)2 d2(pF1+pF2 − pF3 − pF4)

×
eb(p2

1+p2
2 − p2

3 − p2
4) − 1

p2
1+p2

2 − p2
3 − p2

4

n(pF1) n(pF2). (39)

Things are greatly simplified to the order O(a2) by forming the following
combination

C −

c — C'

a +Cc+Cd

=−128p2a2bP F
d2pF1

(2p)2 F
d2pF2

(2p)2 F
d2pF3

(2p)2 F
d2pF4

(2p)2 (2p)2

× d2(pF1+pF2 − pF3 − pF4)
n(pF1) n(pF2) n(pF3)
p2

1+p2
2 − p2

3 − p2
4

. (40)

This expression is then simplified in four steps:

(1) Expanding n(pFi) according to the power of z;

(2) Using the property of the principal value,

P
1

p2
1+p2

2 − p2
3 − p2

4

=Re
1

p2
1+p2

2 − p2
3 − p2

4+i0+

=Im F
.

0
dx e i(p2

1+p2
2 − p2

3 − p2
4+i0+) x (41)
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and the Fourier transformation of the delta function,

d2(pF1+pF2 − pF3 − pF4)=F
d2rF

(2p)2 e i(pF1+pF2 − pF3 − pF4) · rF; (42)

(3) Carrying out the Gauss integration over pFŒs and then the Gauss
integration over rF for each term of the power series in z;

(4) Carrying out the elementary integral over x. The final result reads

C −

c=
4a2

l2 F(z) (43)

with

F(z)= C
.

r, s, t=1

z r+s+t

`rs(r+t)(s+t)
ln

`(r+t)(s+t)+`rs

`(r+t)(s+t) − `rs
.

Collecting above results, we obtain the Virial expansion of a dilute
Bose gas to the second order of the interaction,

p
kBT

=
1
l2 g2(z) −

2a

l2 ln2 1
1 − z

+
2a2

l2
5 4z

1 − z
ln2 1

1 − z
+2f(z)6+O(a3), (44)

with

f(z) — F(z)+1
2 D(z), (45)

and the corresponding number density is given by

n=
1
l2 ln

1
1 − z

−
4a

l2

z
1 − z

ln
1

1 − z
+

2a2

l2

d
d ln z

5 4z
1 − z

ln2 1
1 − z

+2f(z)6+O(a3).
(46)

We notice that the order a2 term start with the third power of z, which may
be viewed as a criteria to fix the constant part pertaining the logarithm of
the running coupling constant (23). Furthermore, the coefficient of z2

agrees with the result obtained with the classical formula of Beth and
Uhlenbeck. (14) The asymptotic behavior of D(z) and F(z) as z Q 1− is
analyzed in Appendix B.

4. THERMODYNAMICAL FUNCTIONS

Among experimental observables of a two dimensional Bose gas are
the homogeneous thermodynamical functions, which follow readily from

492 Ren



the Virial expansion of the last section. For the sake of clarity of notations,
all thermodynamic functions in their ideal gas limit will carry the
superscript ‘‘(0).’’

Inverting (46), an expression of the fugacity z in terms of the density n
is obtained to the order a2,

ln z=ln z (0)+4at −
4a2

et − 1
df

d ln z
:
z=z(0)

(47)

with t — nl2 and z (0)=1 − e−t, the fugacity of an ideal Bose gas in two
dimensions. On substituting (47) back to (44), we obtain the equation of
state to the order a2,

p=p(0)+8pan2+
16p

l4 a2 5f(1 − e−t) −
t

et − 1
df

d ln z
:
z=1 − e − t

6 , (48)

where

p (0)=
4p

l4 g2(1 − e−t)=
4p

l4
5t −

t2

4
+ C

.

m=1

(−)m − 1 Bm

(2m+1)!
t2m+16 (49)

is the equation of state for an ideal gas with Bm the mth Bernoullian
number.

The Helmholtz free energy per unit volume is obtained through the
formula

f=mn − p=f(0)+8pan2 −
16pa2

l4 f(1 − e−t). (50)

The entropy per unit volume is given by

s=1 “p
“T

2
m

=s (0) −
16pa2

l4T
5t2 − 2f(1 − e−t)+

t

et − 1
df

d ln z
:
z=1 − e − t

6 (51)

and the correction to the ideal limit is of the a2. It follows from (50) and
(51) that the internal energy per unit volume is

u=f+Ts=u(0)+8pan2 −
16pa2

l4
5t2 − f(1 − e−t)+

t

et − 1
df

d ln z
:
z=1 − e − t

6 .

(52)
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The specific heat at a constant volume(area) reads

cV=T 1 “s
“T

2
n

=c (0)
V +

4a2kB

l2
5t2+2f(z) −

t(2et − 2+tet)
(et − 1)2

df

d ln z
+

t2

(et − 1)2

d2f

d(ln z)2
6:

z=1 − e − t
,

(53)

and the leading order contribution of the interaction is proportional to a2.
The isothermal compressibility, oT can be calculated readily from (48) with
the results

oT=−W 1 “p
“W

2
T
=o (0)

T +16pan2+
16pa2n2

(et − 1)2
5et

df

d ln z
−

d2f

d(ln z)2
6:

z=1 − e − t
.

(54)

Employing the thermodynamic relationship

oS − oT=−
n2T
cV

1 “p
“T

2
n

5 “

“n
1 s

n
26

T
(55)

we find the adiabatic compressibility

oS=−W 1 “p
“W

2
S

=o (0)
S +16pan2+16pa2n2+

32pa2

l4
5f(z) −

t

et − 1
df

d ln z
6:

z=1 − e − t
, (56)

which can be directly measured through the sound speed in the Bose gas,

v==2oS

n
. (57)

5. CONCLUDING REMARKS

In previous sections, we have developed a diagrammatic approach to
the Virial expansion of a dilute Bose gas with a repulsive interaction of a
short range, valid in the region where nl2 ’ 1 and l ± a. Before conclud-
ing the paper, we shall remark on its implication on the quasi Bose–
Einstein condensation and its applicability to the realistic system of an
quasi-2D gas of alkaline atoms in a strongly anisotropic trap.
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All coefficients of the Virial expansion (44) are singular at z=1, and
the singularity gets stronger at higher orders. A simple power counting
argument shows that the coefficient of aN diverges as (1 − z)1 − N as z Q 1−,
up to some powers of ln 1

1 − z , as is bore out in the explicit form of (44) to a2

(see Appendix B for the singularities of D(z) and F(z)). Therefore the
reliability of the expansion requires that

a ° 1 − z. (58)

Using formula (23) for a and the ideal gas limit of z, condition (58)
becomes

T ±
4pn

ln ln 1
2pna2

, (59)

which is consistent with the formula of the transition temperature to the
superfluid phase, obtained in refs. 6 and 8, under a mean field approxima-
tion. It will be interesting to see whether the resummation of diagrams
developed in ref. 16 for a 3D hard sphere Bose gas can be applied here to
extract the ground state energy beyond the mean-field approximation and
to compare with the results in refs. 7 and 9. At this stage, we only remark
on that the order a correction to the internal energy is twice of the rigorous
result of Lieb and Yngvason (17) for the ground state energy for the thermal
wavelength comparable with the inter-boson distance. The factor two
comes from the exchange energy which is absent at zero temperature
because of the Bose condensate. For a point-like repulsion corresponding
to the leading order term of (25), the exchange energy is equal to the clas-
sical energy and thereby doubles the interaction energy under the mean-
field approximation. A similar effect was observed in three dimensions. (16) 2

2 Another way to understand the factor two is to consider the expectation value of the poten-
tial energy of a point-like repulsion with respect to a state of N(=nW) free bosons, i.e.,
E — O| V

2W ;pF1, pF2, pF Œ1, pF Œ2
dpF1+pF2, pF Œ1+pF Œ2

b†
pF Œ2

b†
pF Œ1

bpF1
bpF2

|P with |P a product of single particle states. The
summation can be broken into three nonvanishing terms: E= V

2W [;pF1, pF2
O|b†

pF2
b†

pF1
bpF1

bpF2
|P

+;pF1, pF2
O|b†

pF1
b†

pF2
bpF1

bpF2
|P− ;pF O|b†

pFb
†
pFbpFbpF |P]. In the limit of an infinite volume, W Q ., each

of the first and second terms gives rise to N2. If all bosons occupy one momentum level
(Bose condensate), the third term contributes −N2, making the sum E0

W =1
2 Vn2. If none of

the levels are macroscopically occupied, the third term is O(N) and will not contribute to
the infinite volume limit. We have then E0

W =Vn2.

The Virial expansion in two dimensions is characterized by the
logarithm in the denominator of the running coupling constant (23) with a
universal coefficient. The observation of such a universality demands the
logarithm to be large enough a large enough such that the first few terms
of the expansion represent a reasonable approximation. Experimentally,
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a quasi-two dimensional gas can be implemented with a strongly anisotro-
pic trap, which can be modeled as a three dimensional gas in a narrow
harmonic well in one direction, referred to as the trapped direction. An
analytical solution to the two-body scattering for large extension of the
single particle wave function in the trapped direction, l, in comparison with
the range of the inter-particle interaction (which remains three-dimen-
sional) was obtained in ref. 18, and an effective phase shift of the two
dimensional s-wave component can be extracted when the de Broglie
wavelength in the trapped plane becomes much longer than l,

deff.=−
p

2 ln 1
kaeff.

, (60)

where k is the relative 2D momentum and aeff.=`p l exp(− `
p

2
l
a) with a

the 3D scattering length. The authors of ref. 18 also found numerically that
the approximation (60) works well even when l ’ a. The typical inter-par-
ticle distance in an atomic trap is about 104 Å and the typical 3D scattering
length for alkaline atoms is of the order of 100 Å. For the thermal wave-
length equal to the inter-particle distance and the trapped dimension equal
to a (which is technically feasible), we have aeff. 4 51 Å and then a 4 0.12,
according to (23) with a there replaced by aeff.. The universal 2D logarithm
could be quite significant to observations.

APPENDIX A

To regularize the infinite volume limit of Vm(p −, p) defined in (14), we
follow the usual practice by restricting the relative coordinate rF within a
large circle of radius R and imposing the Dirichlet boundary conditions for
the wave functions with and without potential V, i.e.,

um(k | R)=0 (A1)

and

u (0)
m (p | R)=0, (A2)

where um(k | r) is the solution of the radial Schrödinger equation, regular at
r=0,

5−
2
r

d
dr

(r
d
dr

)+
2m2

r2 − V(r)6 um(k | r)=2k2um(k | r), (A3)
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and u (0)
m (p | r)=Jm(pr) satisfies the radial Schrödinger equation of a free

particle, i.e.,

5−
2
r

d
dr
1 r

d
dr
2+

2m2

r2
6 u (0)

m (k | r)=2p2u (0)
m (k | r). (A4)

For pr ± 1, the asymptotic behavior of u (0)
m (p | r) is

u (0)
m (p | r) 4 = 2

ppr
cos 1 pr −

mp

2
−

p

4
2 (A5)

and that of um(k | r) for kr ± 1 is given by (12). It follows from (A1), (A2),
(A5), and (12) that

p=pn=1n+
m
2

+
1
4
2 p

R
(A6)

and

k=kn=pn −
dm(pn)

R
(A7)

for large R.
Multiplying (A3) by Jm(pr) and (A2) by um(k | r), subtracting the

result and using the boundary condition (A1) and (A2), we find

F
R

0
dr rJm(pr) um(k | r)=

vm(p, k)
2(k2 − p2)

, (A8)

where

vm(p, k)=F
R

0
dr rJm(pr) V(r) um(k | r), (A9)

and is well behaved in the limit R Q .. Equation (14) becomes then

Vm(p −, p)=p C
k

N2
kme−2bk2 vm(p −, k) vm(p, k)

k2 − p2 (A10)

with Nkm the normalization constant such that

N2
km F

R

0
dr ru2

m(k | r)=1. (A11)

Using the asymptotic behavior (12), we find Nkm 4 `
pk
R for large R.
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To take the limit R Q . of the sum (A10), we need to isolate out the
k’s which are sufficiently close to p. For this purpose, we introduce a subset
of k’s, B, such that all k ¥ B satisfy the condition that |k − p| < Np

R for
N ± 1. We further specify the order of the limit such that R Q . first and
then N Q .. Consequently, the summation in (A10) is divided into two
parts,

Vm(p −, p)=V <
m (p −, p)+V >

m (p −, p), (A12)

with V <
m (p −, p) including only the k’s within B and V <

m (p −, p) all others.
For V <

m (p −, p), all the k’s except those in the denominator can be set to p,
and we obtain that

V <
m (p −, p) 4

p2

2
e−2bp2

vm(p −, p) vm(p, p) C
N

l=−N

1
pl − dm(p)

=
p2

2
e−2bp2

vm(p −, p) vm(p, p) cot dm(p). (A13)

The summation Vm(p −, p), however can be replaced simply by the principal
value of an integral, i.e.

V >
m (p −, p)=pP F

.

0
dk ke−2bk2 vm(p −, k) vm(p, k)

k2 − p2 . (A14)

Following the same steps that leads to (A8), we derive that

vm(p, p)=−
4
p

sin dm(p). (A15)

APPENDIX B

In this appendix, we shall determine the singular behavior of the func-
tions D(z) and F(z) in the Virial expansion (44) as z Q 1−.

On writing D(z)=D1(z)+D2(z) with

D1(z) — C
.

r, s=1

z r+s

rs
ln 2rs (B1)

and

D2(z) — − C
.

r, s=1

z r+s

rs
ln(r+s), (B2)
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we have

D1(z)=2S1(z) S2(z)+S2
1(z) ln 2, (B3)

where

S1(z)= C
.

n=1

zn

n
=ln

1
1 − z

(B4)

and

S2(z)= C
.

n=1

zn

n
ln n 4

1
2

ln2 1
1 − z

, (B5)

as z Q 1−. To estimate D2(z), we rewrite it as

D2(z)= C
.

N=1
CNzN (B6)

where

CN=ln N C
m+n=N

1
mn

=
2
N

ln N C
N − 1

n=1

1
n

4
2
N

ln2 N (B7)

for N ± 1. It follows then that

D2(z) 4 2 C
.

N=1

zN

N
ln2 N 4

2
3

ln3 1
1 − z

. (B8)

Combining (B1) and (B2) with the aid of (B3)–(B5) and (B8), we obtain the
asymptotic formula

D(z) 4
1
3

ln3 1
1 − z

. (B9)

The asymptotic behavior of F(z) can be determined by its integral
representation, read off from (40) and (43)
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F(z)=−128p3b2P F
d2pF1

(2p)2 F
d2pF2

(2p)2 F
d2pF3

(2p)2 F
d2pF4

(2p)2 (2p)2

× d2(pF1+pF2 − pF3 − pF4)
n(pF1) n(pF2) n(pF3)
p2

1+p2
2 − p2

3 − p2
4

=−32p3b2 F
d2pF1

(2p)2 F
d2pF2

(2p)2 F
d2pF3

(2p)2 F
d2pF4

(2p)2 (2p)2 d2(pF1+pF2 − pF3 − pF4)

×
n(pF1) n(pF2)[n(pF3)+n(pF4)] − n(pF3) n(pF4)[n(pF1)+n(pF2)]

p2
1+p2

2 − p2
3 − p2

4

. (B10)

On writing z=e−E, the leading singularity of F(z) in the limit z Q 1− can be
extracted from the integration domain where pj < g

`b
for j=1, 2, 3, 4 with

E ° g ° 1. We have then

F(z) 4 32p3 F
kj < g

D
4

j=1

d2kFj

(2p)2

(2p)2 d2(kF1+kF2 − kF3 − kF4)
(k2

1+E)(k2
2+E)(k2

3+E)(k2
4+E)

4
4
E

F
.

0
dx xK4

0(x) (B11)

with K0(x) the modified Bessel function of the second kind.

ACKNOWLEDGMENTS

I would like to thank Professor N. Khuri for valuable discussions.
This work is supported in part by the US Department of Energy under
Grants DE-FG02-91ER40651-TASKB.

REFERENCES

1. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71:463 (1999).
2. T. D. Lee and C. N. Yang, Phys. Rev. 105:1119 (1957).
3. T. D. Lee and C. N. Yang, Phys. Rev. 113:1165 (1959); 116:25 (1959).
4. E. Lieb, J. Math. Phys. 8:43 (1967).
5. M. Schick, Phys. Rev. A 3:1067 (1971).
6. V. N. Popov, Theor. and Math. Phys. 11:565 (1977).
7. D. F. Hines, N. E. Frankel, and D. J. Mitchell, Phys. Lett. A 3:1067 (1978)
8. D. S. Fisher and P. C. Hohenberg, Phys. Rev. B 37:4936 (1988).
9. A. A. Ovchinnikov, J. Phys. Condens. Mat. 5:8665 (1993).

10. J. O. Anderson, Eur. Phys. J. B 28:389 (2002).
11. S. K. Adhikari, Amer. J. Phys. 54:362 (1986).
12. K. Chadan, N. N. Khuri, A. Martin, and T. T. Wu, Phys. Rev. D 58:025014 (1998).
13. P. C. Hohenberg, Phys. Rev. 158:383 (1967).

500 Ren



14. R. Friedberg, T. D. Lee, and Hai-cang Ren, Phys. Rev. B 50:10190 (1994).
15. E. Beth and G. E. Uhlenbeck, Physica 4:915 (1937).
16. T. D. Lee and C. N. Yang, Phys. Rev. 117:12 (1960).
17. E. H. Lieb and J. Yngvason, J. Stat. Phys. 103:509 (2001).
18. D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev. Lett. 84:2551 (2000).

Virial Expansion of a Dilute Bose Gas in Two Dimensions 501


	1. INTRODUCTION
	2. THE RENORMALIZED POTENTIAL
	3. VIRIAL EXPANSION
	4. THERMODYNAMICAL FUNCTIONS
	5. CONCLUDING REMARKS
	1. APPENDIX A
	2. APPENDIX B
	ACKNOWLEDGMENT

